Part Number Hot Search : 
001AC 78B12T APL3520C 3KE13A 90100 M41ST84W BA6813 HC256DMB
Product Description
Full Text Search
 

To Download APT80GA90LD40 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  052-6348 rev d 6 - 2011 absolute maximum ratings symbol parameter ratings unit v ces collector emitter voltage 900 v i c1 continuous collector current @ t c = 25c 145 a i c2 continuous collector current @ t c = 100c 80 i cm pulsed collector current 1 239 v ge gate-emitter voltage 2 30 v p d total power dissipation @ t c = 25c 625 w ssoa switching safe operating area @ t j = 150c 239a @ 900v t j , t stg operating and storage junction temperature range -55 to 150 c t l lead temperature for soldering: 0.063" from case for 10 seconds 300 combi (igbt and diode) typical applications zvs phase shifted and other full bridge half bridge high power pfc boost welding ups, solar, and other inverters high frequency, high ef? ciency industrial features fast switching with low emi very low e off for maximum ef? ciency ultra low c res for improved noise immunity low conduction loss low gate charge increased intrinsic gate resistance for low emi rohs compliant APT80GA90LD40 900v power mos 8 ? is a high speed punch-through switch-mode igbt. low e off is achieved through leading technology silicon design and lifetime control processes. a reduced e off - v ce(on) tradeoff results in superior ef ? ciency compared to other igbt technologies. low gate charge and a greatly reduced ratio of c res /c ies provide excellent noise immunity, short delay times and simple gate drive. the intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during switching, resulting in low emi, even when switching at high frequency. microsemi website - http://www.microsemi.com high speed pt igbt static characteristics t j = 25c unless otherwise speci? ed symbol parameter test conditions min typ max unit v br(ces) collector-emitter breakdown voltage v ge = 0v, i c = 1.0ma 900 v v ce(on) collector-emitter on voltage v ge = 1 5 v, i c = 47a t j = 25c 2.5 3.1 t j = 125c 2.2 v ge(th) gate emitter threshold voltage v ge =v ce , i c = 1ma 3 4.5 6 i ces zero gate voltage collector current v ce = 900v, v ge = 0v t j = 25c 350 a t j = 125c 1500 i ges gate-emitter leakage current v gs = 30v 100 na APT80GA90LD40 downloaded from: http:///
052-6348 rev d 6 - 2011 thermal and mechanical characteristics dynamic characteristics t j = 25c unless otherwise speci? ed APT80GA90LD40 symbol characteristic min typ max unit r jc junction to case thermal resistance (igbt) - - 0.2 c/w r jc junction to case thermal resistance (diode) .61 w t package weight - 6.1 - g torque mounting torque (to-264 package), 4-40 or m3 screw 10 inlbf symbol parameter test conditions min typ max unit c ies input capacitance capacitance v ge = 0v, v ce = 25v f = 1mhz 4560 pf c oes output capacitance 411 c res reverse transfer capacitance 62 q g 3 total gate charge gate charge v ge = 15v v ce = 450v i c = 47a 200 nc q ge gate-emitter charge 30 q gc gate- collector charge 72 ssoa switching safe operating area t j = 150c, r g = 4.7 4 , v ge = 15v, l= 100uh, v ce = 900v 239 a t d(on) turn-on delay time inductive switching (25c) v cc = 600v v ge = 15v i c = 47a r g = 4.7 4 t j = +25c 18 ns t r current rise time 29 t d(off) turn-off delay time 149 t f current fall time 85 e on2 turn-on switching energy 1652 j e off 6 turn-off switching energy 1389 t d(on) turn-on delay time inductive switching (125c) v cc = 600v v ge = 15v i c = 47a r g = 4.7 4 t j = +125c 18 ns t r current rise time 31 t d(off) turn-off delay time 192 t f current fall time 128 e on2 turn-on switching energy 2813 j e off 6 turn-off switching energy 2082 1 repetitive rating: pulse width and case temperature limited by maximum junction temperature. 2 pulse test: pulse width < 380 s , duty cycle < 2%. 3 see mil-std-750 method 3471.4 r g is external gate resistance, not including internal gate resistance or gate driver impedance. (mic4452) 5 e on2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the igbt turn on energy loss. a combi device is used for the clamping diode.6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. microsemi reserves the right to change, without notice, the speci? cations and information contained herein. downloaded from: http:///
052-6348 rev d 6 - 2011 typical performance curves APT80GA90LD40 0 25 50 75 100 125 150 25 50 75 100 125 150 0 1 2 3 4 5 6 0 25 50 75 100 125 150 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 160 180 200 0 1 2 3 4 5 6 6 8 10 12 14 16 0 50 100 150 200 250 0 2 4 6 8 10 12 14 0 50 100 150 200 250 300 350 0 4 8 12 16 20 24 28 32 0 20 40 60 80 100 0 1 2 3 4 5 6 250 s pulse test<0.5 % duty cycle t j = 25c. 250 s pulse test <0.5 % duty cycle v ge = 15v. 250 s pulse test <0.5 % duty cycle i c = 23.5a i c = 47a i c = 94a i c = 47a i c = 94a 13v 5v 15v i c = 47a t j = 25c v ce = 720v v ce = 450v v ce = 180v t j = 25c t j = -55c v ge = 15v t j = 55c t j = 150c v ce , collector-to-emitter voltage (v) figure 1, output characteristics (t j = 25c) i c , collector current (a) t j = 25c t j = 125c v ce , collector-to-emitter voltage (v) figure 2, output characteristics (t j = 25c) i c , collector current (a) t j = 125c v ge , gate-to-emitter voltage (v) figure 3, transfer characteristics i c , collector current (a) v ge , gate-to-emitter voltage (v) figure 5, on state voltage vs gate-to-emitter voltage v ce , collector-to-emitter voltage (v) gate charge (nc) figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 6, on state voltage vs junction temperature v ce , collector-to-emitter voltage (v) t c , case temperature (c) figure 8, dc collector current vs case temperature i c , dc collector current (a) -50 -25 0 25 50 75 100 125 150 1.15 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 t j , junction temperature figure 7, threshold voltage vs junction temperature v gs(th) , threshold voltage (normalized) 6v 7v 8v i c = 23.5a 9v 10v downloaded from: http:///
052-6348 rev d 6 - 2011 0 1000 2000 3000 4000 5000 6000 7000 0 25 50 75 100 125 0 2000 4000 6000 8000 10000 12000 0 10 20 30 40 50 0 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100 0 1000 2000 3000 4000 5000 6000 7000 0 20 40 60 80 100 0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 50 100 150 200 250 300 0 20 40 60 80 100 10 12 14 16 18 20 22 24 0 20 40 60 80 100 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 600v r g = 4.7 l = 100 h v ce = 600v v ge = +15v r g =4.7 v ce = 600v t j = 25c , or 125c r g = 4.7 l = 100 h v ce = 600v v ge = +15v r g = 4.7 v ce = 600v v ge = +15v r g = 4.7 r g = 4.7 , l = 100 h, v ce = 600v t j = 125c t j = 25c t j = 125c t j = 25c r g = 4.7 , l = 100 h, v ce = 600v t j = 25 or 125c,v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v e on2, 94a e on2, 47a e off, 47a e on2, 23.5a e off, 23.5a v ce = 600v v ge = +15v t j = 125c e on2 94a e on2, 47a e off, 94a e off, 47a e on2, 23.5a e off, 23.5a i ce , collector-to-emitter current (a) figure 9, turn-on delay time vs collector current t d(on) , turn-on delay time (ns) i ce , collector-to-emitter current (a) figure 10, turn-off delay time vs collector current t d(off) , turn-off delay time (ns) i ce , collector-to-emitter current (a) figure 11, current rise time vs collector current t r , rise time (ns) i ce , collector-to-emitter current (a) figure 12, current fall time vs collector current t r , fall time (ns) i ce , collector-to-emitter current (a) figure 13, turn-on energy loss vs collector current e on2 , turn on energy loss ( j) i ce , collector-to-emitter current (a) figure 14, turn-off energy loss vs collector current e off , turn off energy loss ( j) r g , gate resistance (ohms) figure 15, switching energy losses vs gate resistance switching energy losses ( j) t j , junction temperature (c) figure 16, switching energy losses vs junction temperature switching energy losses ( j) e off, 94a typical performance curves APT80GA90LD40 downloaded from: http:///
052-6348 rev d 6 - 2011 typical performance curves APT80GA90LD40 0 0.05 0.10 0.15 0.20 0.25 10 -5 10 -4 10 -3 10 -2 0.1 1 10 100 1000 10000 0 200 400 600 800 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration 0.5 0.1 0.05 c oes c res c ies peak t j = p dm x z jc +t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: v ce , collector-to-emitter voltage (volts) figure 17, capacitance vs collector-to-emitter voltage c, capacitance (pf) 0.1 1 10 100 1000 1 10 100 1000 v ce , collector-to-emitter voltage figure 18, minimum switching safe operating area i c , collector current (a) downloaded from: http:///
052-6348 rev d 6 - 2011 figure 21, turn-on switching waveforms and de? nitions t j = 125c collector current collector voltage gate voltage 5% 10% t d(on) 90% 10% t r 5% switching energy figure 22, turn-off switching waveforms and de? nitions t j = 125c collector voltage collector current gate voltage switching energy 0 t d(off) 10% t f 90% i c a d.u.t. v ce v cc apt30dq100 figure 20 inductive switching test circuit APT80GA90LD40 downloaded from: http:///
052-6348 rev d 6 - 2011 static electrical characteristics dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. ultrafast soft recovery rectifier diode symbol characteristic / test conditions APT80GA90LD40 unit i f(av) maximum average forward current (t c = 106c, duty cycle = 0.5) 40 amps i f(rms) rms forward current (square wave, 50% duty) 60 i fsm non-repetitive forward surge current (t j = 45c, 8.3 ms) 210 symbol characteristic / test conditions min type max unit v f forward voltage i f = 40a 2.5 volts i f = 80a 3.08 i f = 40a, t j = 125c 1.97 symbol characteristic test conditions min typ max unit t rr reverse recovery time i f = 1a, di f /dt = -100a/ s , v r = 30v, t j = 25 c - 25 - ns t rr reverse recovery time i f = 40a, di f /dt = -200a/ s v r = 667v, t c = 25 c - 250 - q rr reverse recovery charge - 415 - nc i rrm maximum reverse recovery current - 4 - amps t rr reverse recovery time i f = 40a, di f /dt = -200a/ s v r = 667v, t c = 125 c - 315 -n s q rr reverse recovery charge - 1650 - nc i rrm maximum reverse recovery current - 9 - amps t rr reverse recovery time i f = 40a, di f /dt = -1000a/ s v r = 667v, t c = 125 c - 145 - ns q rr reverse recovery charge - 2660 -n c i rrm maximum reverse recovery current - 29 - amps z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 23. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.700.60 0.50 0.40 0.30 0.20 0.10 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 downloaded from: http:///
052-6348 rev d 6 - 2011 dynamic characteristics t j = 25c unless otherwise speci? ed APT80GA90LD40 t j = 125 c v r = 667v 20a 40a 80a 400350 300 250 200 150 100 50 0 3530 25 20 15 10 50 duty cycle = 0.5 t j = 175 c 7060 50 40 30 20 10 0 1.21.0 0.8 0.6 0.4 0.2 0.0 160140 120 100 8060 40 20 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 28. dynamic parameters vs. junction temperature figure 29. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 30. junction capacitance vs. reverse voltage 120100 8060 40 20 0 40003500 3000 2500 2000 1500 1000 500 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 24. forward current vs. forward voltage figure 25. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 26. reverse recovery charge vs. current rate of change figure 27. reverse recovery current vs. current rate of change q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 1.0 2.0 3.0 4.0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = 125 c v r = 667v 80a 20a 40a t j = 125 c v r = 667v 80a 40a 20a t rr q rr q rr t rr i rrm 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 downloaded from: http:///
052-6348 rev d 6 - 2011 dynamic characteristics t j = 25c unless otherwise speci? ed APT80GA90LD40 4 3 1 2 5 zer o 0.25 i rr m apt10035lll pearson 2878 current transformer di f /dt adjus t 30h d.u.t. +18v 0v v r t rr / q rr waveform 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122)3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) collecto emitte gate dimensions in millimeters and (inches) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. collecto to-264 (l) package outline (cathode) (anode) (cathode) figure 32. diode reverse recovery waveform de? nition figure 31. diode test circuit i f - forward conduction current di f /dt - rate of diode current change through zero crossing. i rrm - maximum reverse recovery current t rr - reverse recovery time measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through i rrm and 0.25, i rrm passes through zero. q rr - area under the curve de ? ned by i rrm and t rr. 5 1 2 3 4 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT80GA90LD40

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X